Influence of the aminoacyl-tRNA synthetase inhibitors and the diadenosine-5'-tetraphosphate phosphonate analogues on the catalysis of diadenosyl oligophosphates formation.
نویسندگان
چکیده
Well-known aminoacyl-tRNA synthetase (ARSase) inhibitors, namely the analogues of amino acids and aminoacyl adenylates (aminoalkyl- and aminophosphonyl adenylates with Ki congruent to 0.1 microM) as well as the diadenosine 5',5'''-p1,p4-tetraphosphate (Ap4A) phosphonoanalogues, were for the first time used for the Ap4A biosynthesis regulation. Effects of a set of such compounds on lysyl-, phenylalanyl- and alanyl-tRNA synthetases from E. coli, capable of synthesizing Ap4A in the presence of Zn2+ ions and pyrophosphatase, have been studied. The adenylate analogues were found to inhibit the Ap4A and Ap3A formation (I50 congruent to 6 mM). Aminophosphonic and aminophosphonous acids are not involved in Ap3A and Ap4A biosynthesis and inhibited it at high concentrations. The Ap4A phosphoanalogues slightly inhibited the major reactions of ARSases, as well as the biosynthesis of Ap3A and Ap4A, at a concentration of 5 mM.
منابع مشابه
Adenosine tetraphosphoadenosine drives a continuous ATP-release assay for aminoacyl-tRNA synthetases and other adenylate-forming enzymes.
Aminoacyl-tRNA synthetases are essential for the correct linkage of amino acids to cognate tRNAs to maintain the fidelity of protein synthesis. Tractable, continuous assays are valuable for characterizing the functions of synthetases and for their exploitation as drug targets. We have exploited the unexplored ability of these enzymes to consume adenosine tetraphosphoadenosine (diadenosine 5',5‴...
متن کاملCrystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis.
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction i...
متن کاملSide Chain Independent Recognition of Aminoacyl Adenylates by the Hint1 Transcription Suppressor
Human Hint1 suppresses specific gene transcription by interacting with the transcription factor MITF in mast cells. Hint1 activity is connected to lysyl-tRNA synthetase (LysRS), a member of the universal aminoacyl tRNA synthetase family that catalyzes specific aminoacylation of their cognate tRNAs, through an aminoacyl adenylate (aa-AMP) intermediate. During immune activation, LysRS produces a ...
متن کاملDiadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) hydrolase from tomato (Lycopersicon esculentum cv. Lukullus)--purification, biochemical properties and behaviour during stress.
Dinucleoside 5',5"'-P1,P4-tetraphosphate hydrolase (EC 3.6.1.17) has been purified to homogeneity from tomato (Lycopersicon esculentum) cells grown in suspension. The purification procedure comprised ammonium sulphate fractionation following five standard chromatography steps and a final chromatography on Ap4A-Sepharose. The homogeneous hydrolase has a molecular mass of 20 kDa and an isoelectri...
متن کاملMutation in Aminoacyl Trna Synthetase 1 In Autosomal Recessive Intellectual Disability
Background: Intellectual disability (ID) is one of the most common neurodevelopment disorders that caused by both environment and genetic factors. Also genetic defects have involving for approximately 50% of ID etiology, it is demonstrated that genetics play significant role in ID development. The important risk factor in most country in ID is consanguinity marriage. Iran has high frequency of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 273 1-2 شماره
صفحات -
تاریخ انتشار 1990